

St
an

d
20

21
/0

2

DALI Low Level Driver
MANUAL

DALI low level driver Introduction 2 von 26

Table of contents

1 Introduction .. 3

2 Safety ... 4

3 Classification and purpose ... 5

4 Structure and features ... 6

5 Hardware requirements .. 7

6 Signalling .. 8

7 DALI Low Level Driver - Main program 9
Example .. 9
PCIO-Interrupt (STM32xx), example .. 10

8 Modul dali_ll_hal.c .. 13

9 Function dali_init ... 18

10 Data exchange – DALI low-level driver  API 24

11 General .. 25

12 Product support ...26

DALI low level driver Introduction 3 von 26

1 Introduction

Notation and
symbols used <Buttons> The notation <Button> is used to

mention specific buttons within the

text body.

Graphic symbols are also used for

buttons, where suitable.

Network commands, file and

product names

Network commands, such as

traceroute or ping, as well as file

and product names, are all written

in italics.

Source code Shown in the body text as follows:

source code

Menu designations

and paths

As a rule, menu functions will be

localised in the MAIN MENU /

SUBMENU / ... form.

Screenshots The essential illustrations show the

software under a Microsoft

Windows 10 installation.

Target group These instructions are intended for specialist personnel, who are

familiar with programming and network configuration.

DALI low level driver Safety 4 von 26

2 Safety
 The software present no direct hazards. However, in their function as a

gateway between networks in building infrastructures, they are able to

seriously disrupt the interaction of network components.

 Warning

Misconfiguration of hardware and software!

Faulty configuration of hardware and software can cause

malfunctions in the building infrastructure on network components,

sensors or actuators, for example:

• Monitoring devices, such as fire alarm or intrusion detection

systems, are deactivated.

• Machines and fans start up unexpectedly.

• Gate valves and other valves open or close unintentionally.

Under certain circumstances, this can lead to serious injuries or

death.

The configuration of the software should therefore only be carried

out by specialist personnel who are familiar with the network and

driver configuration!

DALI low level driver Classification and purpose 5 von 26

3 Classification and purpose
Classification Driver software to enable the communication of microcontrollers with

DALI hardware. Hereinafter referred to as the Low Level Driver (LLT).

DALI Architecture

Purpose In DALI architecture, the Low Llevel Driver enables DALI-APIs, and

therefore DALI-Applications, to communicate with the current

hardware and thus the DALI bus.

Note

 Future versions of the driver will be able to support several buses,

which explains the parameters already present in the module

dali_ll_hal.c in low-level routines.

DALI low level driver Structure and features 6 von 26

4 Structure and features
General The module is implemented in such a way that no hardware or

operating system-related functions are used.

 Such functions are transferred to a module to be created by the user

dali_ll_hal.c as callbacks.

 Although the examples given here are programmed for STM32

processors. It should also be possible to implement them on other

hardware.

Communication Communication to and from the driver is also established by means of

callbacks, as described in detail in the API documentation.

 All messages to and from the driver are processed via queues to stop

interrupt actions lasting too long. The processing of queues is initiated

in the main program or in a DALI thread in multi-tasking environments.

 As the driver is able to support several instances of DALI-API on one

hardware, several DALI devices (e.g. one LED and one application

controller) can exist on a single hardware. These communicate with

one another via the driver and with external devices via the DALI bus.

For this purpose, the driver has a loop layer which, after a message is

sent via the hardware, delivers this to all other instances on the same

hardware.

DALI low level driver Hardware requirements 7 von 26

5 Hardware requirements

GPIO
(general-purpose
input/output)

The Low Level Driver needs two GPIOs

for writing and reading on the bus.

The read GPIO must provide an interrupt

in the event of a level change.

Hardware timer Minimum resolution 10 µs,

an interrupt must be available.

CPU Bus width 32 Bit,

minimum frequency 32 MHz.

DALI low level driver Signalling 8 von 26

6 Signalling
 In multi-tasking environments such as RTOS, signalling callback is

provided, by means of which the Low Level Driver can notify the

application where data is queued for processing.

 The signaling does not have to contain a queue, just signal that

something is to be done. When a message is received, all DaliQueues

are processed in full.

Note

 If this mechanism is not used, the callback must be initialized

with NULL.

DALI low level driver DALI Low Level Driver - Main program 9 von 26

7 DALI Low Level Driver - Main program

Example

Explanation The dalill_inithardware() function contains everything needed to

initialize the target hardware. It may be necessary to access an

automatically generated code.

 Here the PCIOs and the timer are initialized. The timer is not yet

started!

 In this function, the two interrupt routines of the Low Level Driver are

also set on the corresponding vectors.

 In the case of the LLT, this means the functions dalill_interruptExt for the

DALI read pin and dalill_timerinterrupt2 for the timer. Both functions

require a parameter of the type dalill_bus_t*. As outlined above, this is

envisaged for the future multi-bus operation.

#include "da l i_l l_ha l.h"
#include "da l i_l l .h"
#include "da l i .h"

dal i l l_bus_t* pDal i l l_bus_0;
void DALI_ThreadFunc(void *argument) // oder main()
{
 // do hardware ini t ia l izat ion
 da l i l l_initHardware();
 // init da l is tack
 // init da l i_l l
 pDal i l l_bus_0 = dal i l l_createBusLine(&dal i l l_getBusState,
 &dal i l l_setBusStateHigh,
 &dal i l l_setBusStateLow);
 // init da l i l ib (API)
 da l i_ini t(pDal i l l_bus_0,NULL);
 whi le (1)
 {
 // Dieses i f nur in Mult i taskingumgebungen mit S ignal l ingca l lback
 // Beisp ielhaft für Rtos
 i f (DALI_FLAG == osThreadFlagsWait(DALI_FLAG,osFlagsWaitAny,15))
 {
 / / something to do ?, not necessary i f nothing else should be done in
main

DALI low level driver DALI Low Level Driver - Main program 10 von 26

 whi le (da l i l l_isBusy())
 {
 da l i l l_processQueues();
 }
 }
 }
}

PCIO-Interrupt (STM32xx), example
extern da l i l l_bus_t* pDal i l l_bus_0;
void HAL_GPIO_EXTI_Cal lback(uint16_t GPIO_Pin)
{
 i f(GPIO_Pin == DALI_IN_Pin)
 {
 dal i l l_ interruptExt(pDal i l l_bus_0);
 } . . .

For the TimerInterrupt in this example, a preliminary routine was used

which then supplied the parameter to the real interrupt routine:

// t imer interrupt needs parameter , so we add it here
void dal i l l_t imerInterrupt()
{
 da l i l l_t imerInterrupt2(pDal i l l_bus_0);
}

 Followed by:

HAL_TIM_RegisterCa l lback(&htim16, HAL_TIM_PERIOD_ELAPSED_CB_ID,
dal i l l_t imerInterrupt);

DALI low level driver DALI Low Level Driver - Main program 11 von 26

Initialization Then dalill_createBusLine is called. As a parameter, this has three

callback functions that must be defined in dali_ll_hal.c. The callbacks

are used to test, set and reset the DALI bus lines.

 The level HIGH or LOW relates to the DALI bus and not the value of

the PCIO. When the PCIO drives the DALI bus in an inverted way,

therefore, the PCIO is set to LOW and the bus level is set to HIGH

through dalill_setBusStateHigh.

 The callbacks are set so that the bus can be set to IDLE as soon as the

hardware is activated; this prevents interruptions to the bus.

 If dalill_createBusLine returns a value != NULL, pDalill_bus_0 is a pointer

to this instance of the hardware driver.

 This parameter is now used to call the function dali_init() in the

application module.

 Dali_init is also described in the DALI-API documentation.

Main loop Once initializations have been successfully executed, the main loop

can be performed.

 dalill_isbusy can be used to test whether data requiring processing is

present in the read and/or write queue.

 Calling dalill_processQueues then prompts all data present in both

queues to be processed. This means the data is both passed on to the

DALI-API and sent via the bus. The data is also transferred to any other

instances of DALI-API via the loop interface.

 If nothing else needs to be done in the main loop (apart from

operating the DALI stack), only the dalill_processQueues function needs

to be permanently called.

DALI low level driver DALI Low Level Driver - Main program 12 von 26

 Note

 Where other actions are performed here, make sure these never

block and never last more than a few milliseconds; this will guarantee

smooth operation of the DALI stack.

 In multi-tasking environments such as RTOS, signalling can be used as

outlined above.

 Note

 As the low-level driver generates a 10 ms heartbeat for every

instance of the API and thereby calls up the timing helper function of

the API, the function dalill_isbusy will report data after 10 ms at the

latest in IDLE state.

This or the timing helper are suitable for making an LED flash (for

example), thereby signalling the readiness of the driver.

DALI low level driver Modul dali_ll_hal.c 13 von 26

8 Modul dali_ll_hal.c
This module contains all necessary hardware-related functions. The

example code is intended for an STM32 processor and the signalling

function is realized using the RTOS-APIs.

 The initializations and work routines for the timer are in the upper part.

/*M>---
 * Project: DALI-Stack HAL
 * Descr ipt ion: Abstract ion Layer between DALI-low-leve l dr iver and uC
Timer, Interrupts, etc.
 *
 * Copyr ight (c) by mbs GmbH, Krefeld, info@mbs-software.de
 * Al l r ights reserved.
 --<M*/

#include "app_common.h"
#include "system.h"
#include "da l i_l l_ha l.h"

TIM_HandleTypeDef ht im16;
void Error_Handler(void);
vo id Tim16BaseMspIni tCb(TIM_HandleTypeDef *ht im);
vo id Tim16BaseMspDeInitCb(TIM_HandleTypeDef *ht im);
vo id Tim16init(vo id);
vo id dal i l l_t imerInterrupt();
vo id Tim16init(vo id)
{
 ht im16.Instance = TIM16;
 ht im16.Ini t .Presca ler = 31;
 ht im16.Ini t .CounterMode = TIM_COUNTERMODE_UP;
 ht im16.Ini t .Per iod = 10000;
 ht im16.Ini t .C lockDiv is ion = TIM_CLOCKDIVISION_DIV1;
 ht im16.Ini t .Repet it ionCounter = 0;
 ht im16.Ini t .AutoReloadPre load = TIM_AUTORELOAD_PRELOAD_DISABLE;
 i f (HAL_TIM_Base_Init(&ht im16) != HAL_OK)
 {
 Error_Handler();
 }
}

/*--*/

DALI low level driver Modul dali_ll_hal.c 14 von 26

void Tim16BaseMspIni tCb(TIM_HandleTypeDef *ht im)
{
 /* USER CODE BEGIN TIM16_MspInit 0 */
 /* USER CODE END TIM16_MspInit 0 */
 /* Peripheral clock enable */
 __HAL_RCC_TIM16_CLK_ENABLE();
 /* TIM16 interrupt In it */
 HAL_NVIC_SetPrior i ty(TIM1_UP_TIM16_IRQn, 5, 0);
 HAL_NVIC_EnableIRQ(TIM1_UP_TIM16_IRQn);
}

/*--*/

vo id Tim16BaseMspDeInitCb(TIM_HandleTypeDef *ht im)
{
 __HAL_RCC_TIM16_CLK_DISABLE();
}

/*--*/

vo id dal i l l_ initHardware()
{
 HAL_TIM_RegisterCal lback(&ht im16, HAL_TIM_BASE_MSPINIT_CB_ID,
Tim16BaseMspInitCb);
 HAL_TIM_RegisterCal lback(&ht im16, HAL_TIM_BASE_MSPDEINIT_CB_ID,
Tim16BaseMspDeInitCb);
 T im16init() ;
 HAL_TIM_RegisterCal lback(&ht im16, HAL_TIM_PERIOD_ELAPSED_CB_ID,
dal i l l_t imerInterrupt);
}

/*--*/

// extern dal i l l_bus_t dal i l l_bus_l ines_g[]; Only used for Mult ibus !

uint32_t dal i l l_getCurrentT imerVal(dal i l l_bus_t* pDal i l l_bus)
{
 return ht im16.Instance->CNT;
}
uint32_t dal i l l_getTimerPer iod(da l i l l_bus_t* pDal i l l_bus)
{
 return ht im16.Ini t .Per iod+1;
}

vo id dal i l l_startTimer()
{
 HAL_TIM_Base_Start_IT(&htim16);
}

DALI low level driver Modul dali_ll_hal.c 15 von 26

void dal i l l_setT imerPer iod(uint16_t uPeriod,dal i l l_bus_t* pDal i l l_bus)
{
 __HAL_TIM_SET_AUTORELOAD(&ht im16, uPeriod +
dal i l l_getCurrentTimerVal(pDal i l l_bus) - 1);
}

/*! Set/Read GPIOs of Bus 0 */

uint8_t dal i l l_getBusState()
{
 return HAL_GPIO_ReadPin(DALI_IN_GPIO_Port , DALI_IN_Pin)?0:1;
}

vo id dal i l l_setBusStateHigh()
{
 HAL_GPIO_WritePin(DALI_OUT_GPIO_Port, DALI_OUT_Pin,
GPIO_PIN_RESET);
}

vo id dal i l l_setBusStateLow()
{
 HAL_GPIO_WritePin(DALI_OUT_GPIO_Port, DALI_OUT_Pin,
GPIO_PIN_SET);
}

// Signa l l ing

extern osThreadId_t DALI_ThreadId;
void dal i l l_signalToThread()
{
 osThreadFlagsSet (DALI_ThreadId, DALI_FLAG);
}

// b lock and re lease interrupts

vo id enableIRQ()
{
 __enable_irq();
}

vo id disableIRQ()
{
 __disable_irq();
}

DALI low level driver Modul dali_ll_hal.c 16 von 26

Target hardware If there is no direct possibility for the target hardware to read and/or

change the current timer value or set the timer trigger value, the

functions dalill_getCurrentTimerVal, dalill_getTimerPeriod and

dalill_setTimerPeriod can implement themselves.

TimerInterrupt routine For this, the timer interrupt routine must be called at least every 10 µs

and, depending on a counter, the timer routine of the

Low Level Driver.

 The variables required for this are already defined in the structure

dalill_bus_t in dali_ll.h. These are the member variables of type uint32_t,

tick_cnt and tim_period.

GPIO manipulation In this example, the routines for GPIO manipulation are intended for

hardware with an inverting bus interface.

Timer functions The timer functions assume a timer that counts up and whose period

can be extended with alill_setTimerPeriod, even while it is already

running.

 The function dalill_getCurrentTimerVal assumes, that the timer counter

continues to count even if the period is extended. So, no timer

interrupt is triggered during the extension.

 "getTimerPeriod" returns the current maximum value of the timer.

Note

 If this behavior cannot be achieved by the timer of the target

hardware, it must be simulated in order for the low level driver to

function properly.

DALI low level driver Modul dali_ll_hal.c 17 von 26

IRQ functions The callbacks "enableIRQ" and "disableIRQ" are used to block and

enable the processor interrupts. This is necessary so that the write and

read operations to the I/O queues in the interrupt are atomic.

 Because this action is different on each target hardware, it was moved

to callbacks.

Note

 If this mechanism is not used, the callback must be initialized with

NULL.

DALI low level driver Function dali_init 18 von 26

9 Function dali_init
A dali_init function is described here for two instances of the

DALI stack.

Note

 Most parts are also described in the API documentation.

 The instances of the stack are initially created at the start of dali_init.

Further callbacks for the low-level driver are initialized and the timer is

then started. The driver is thereby ready to use.

/**/
/* Variables for two instances of the stack
**/

// appl icat ion control ler

dal i l ib_act ion_t act ion;
uint8_t bDal iStackReady;
dal i l ib_instance_t pDal iStackInstance;
dal i l ib_cfg_t ctr l_device_config;

// LED DT6-Device

dal i l ib_act ion_t act ionLED;
uint8_t bDal iStackReadyLED; // for LED
dal i l ib_instance_t pDal iStackInstanceLED; // for LED
dal i l ib_cfg_t ctr l_gear_config;

/**/
/* init ia l i ze the HAL dr iver and the DALI stack
**/

vo id dal i_init (da l i l l_bus_t* pDal i l l_bus,da l i l l_bus_t *pDal i l l_bus2)
{

 da l i l l_base_t dal i l l_base;

 // For the appl icat ion control ler

 pDal iStackInstance = NULL;
 bDal iStackReady = 0;
 // create new DALI stack instance
 pDal iStackInstance = dal i l ib_create instance();
 i f (NULL == pDal iStackInstance)
 { / / error
 return;
 }

DALI low level driver Function dali_init 19 von 26

 // Tel l lowleveldr iver from this instance of the stack
 addInstance(pDal i l l_bus,pDal iStackInstance);
 // create and conf igure DALI stack as single appl icat ion control ler
 da l i_create_appl icat ion_control ler_config();
 // add Low Level st ructure to DALI stack instance and v ice versa
 ctr l_device_config.context = pDal i l l_bus;

 // Only one in it ia l va lue. This wi l l be overwritten by the loop layer of the
l l -Driver
 pDal i l l_bus->context = pDal iStackInstance;
 // init ia l ize DALI stack instance
 i f (R_DALILIB_OK != dal i l ib_init (pDal iStackInstance ,
&ctr l_device_config))
 {
 / / error
 return;
 }
 // start DALI stack instance
 i f (R_DALILIB_OK != dal i l ib_start(pDal iStackInstance))
 {
 / / error
 return;
 }

 // For the ledDevice

 pDal iStackInstanceLED = NULL;
 bDal iStackReadyLED = 0;

 // create new DALI stack instance

 pDal iStackInstanceLED = dal i l ib_createinstance();
 i f (NULL == pDal iStackInstanceLED)
 { / / error
 return;
 }

 // Tel l lowleveldr iver from this instance of the stack
 addInstance(pDal i l l_bus,pDal iStackInstanceLED);

 // create and conf igure DALI stack as a LED (DT6-Device)

 da l i_create_gear_configLED();

 // add Low Level st ructure to DALI stack instance and v ice versa

 ctr l_gear_conf ig.context =pDal i l l_bus;

 // init ia l ize DALI stack instance
 i f (R_DALILIB_OK != dal i l ib_init (pDal iStackInstanceLED ,
&ctr l_gear_config))
 {

DALI low level driver Function dali_init 20 von 26

 / / error
 return;
 }

 // start DALI stack instance

 i f (R_DALILIB_OK != dal i l ib_start(pDal iStackInstanceLED))
 {
 / / error
 return;
 }

 // init ia l ize ca l lback funct ions for DALI Low Leve l Dr iver

 da l i l l_base.debug_mode = 0;
 da l i l l_base.max_frame_length = 32;
 da l i l l_base.rx_high_offset = 40; // 60 DALI 2 cl ick
 da l i l l_base.rx_low_offset = 40; // 60 DALI 2 cl ick
 da l i l l_base.tx_high_offset = 20; // 35 DALI 2 cl ick
 da l i l l_base.tx_low_offset = 20; // 35 DALI 2 cl ick
 // Api funct ions
 da l i l l_base.dal i l l t imingHelper = &dal i l l_t imingHelper;
 da l i l l_base.dal i l l toDal i l ib = &dal i l l_toDal i l ib;
 // funt ions in dal i_l l_hal .c
 da l i l l_base.getCurrentTimerVal = &dal i l l_getCurrentT imerVal;
 da l i l l_base.getT imerPeriod = &dal i l l_getTimerPer iod;
 da l i l l_base.setT imerPeriod = &dal i l l_setTimerPeriod;
 da l i l l_base.startTimer = &dal i l l_startTimer;

 // It is important to set th is to NULL i f no signa l l ing is used !!!
 // or implement a dummy funct ion in dal i_l l_hal .c

 da l i l l_base.signalToThread = &dal i l l_signalToThread;

 // funct ions to b lock and re lease interrupts
 // It is important to set th is pointer to NULL if not used

 da l i l l_base.enableIRQ = enableIRQ;
 da l i l l_base.disableIRQ = d isableIRQ;

 // create al l data for LL-Driver and start the t imer
 da l i l l_createBase(&dal i l l_base);
}

DALI low level driver Function dali_init 21 von 26

 The variables

int16_t dalill_base.rx_high_offset,

int16_t dalill_base.rx_low_offset,

int16_t dalill_base.tx_high_offset and

int16_t dalill_base.tx_low_offset are used, to compensate the switching

times of the interface between PCIO and the DALI bus.

This is necessary to ensure the driver does not interpret its own

signals as a collision when sending and thereby block itself.

 The variables

rx_high_offset and

rx_low_offset are used to control the receiving process.

 tx_high_offset and

tx_low_offset are used to control the sending process.

 The unit of this variables is microseconds.

Note

 If needed, negative values are also accepted here!

Procedure for setting

Note

 The variables for the transmitting direction can only be set with the

support of a Dali Tracer or an oscilloscope.

DALI low level driver Function dali_init 22 von 26

Sending offsets With tx_high_offset the time can be changed in which the level of a

„half-bit“ should remain at LOW. If this time is too short, the parameter

must be reduced by the corresponding number of microseconds.

 With tx_low_offset the time can be changed in which the level should

remain HIGH. If this time is too short, the parameter must be

increased.

 The naming of the parameters refers to the change to the target state

HIGH or LOW.

Examples In the following example, both times are too short:

 After reducing tx_high_offset by 10 microseconds, the following picture is obtained:

DALI low level driver Function dali_init 23 von 26

 After increasing tx_low_offset by 12 microseconds, the following picture is obtained:

This way the function is then error-free.

Read offsets Setting the read offsets is relatively simple.

 First rx_high_offset and rx_low_offset are set to value zero.

 When another device transmits, collisions are most likely reported by

the low level driver.

 The offsets are then slowly increased in steps of 10.

 As soon as the collisions stop, this value is to documented. The offsets

are then increased further until collisions are reported again.

 The optimal offset is in the middle between the lower and the upper

determined value. With this, an error free reception should be

possible.

 rx_high_offset and rx_low_offset normally have the same values.

DALI low level driver Data exchange – DALI low-level driver API 24 von 26

10 Data exchange – DALI low-level driver  API
 The Low Level Driver sends messages to the API via the dalill_toDaliLib

function, as in the following example:

/***/
/* forward low level f rames to da l i l ib
**/
void dal i l l_toDal i l ib(void * p_context , da l i l l_frame_t* p_frame)
{
 dal i l ib_receive(p_context , (dal i l ib_frame_t*)p_frame);
}

The API sends data to the Low Level Driver via the dali_send_callback.

This is loaded with data via the function dall_ll_SendQueue. To ensure

the loop layer functions properly, it is important to ensure the right

instance of the APIs is entered in the third parameter.

For example:

/**/
/* wi l l be cal led by the DALI l ibrary i f i t wants to send a DALI message
 * to the dr iver
 * result : 0: success
 **/
stat ic u int8_t da l i_send_cal lback(void * p_context , da l i l ib_frame_t*
p_frame)
{
 uint8_t resul t = 0;
 i f(bDal iStackReady)
 {
 result = dal i l l_pushSendQueue(p_context,(da l i l l_frame_t*) p_frame,
 pDal iStackInstance);
 }
 return result ;
}

The last major callback is the timing helper, which makes it possible to

check and comply with API times.

For example:

/**/
/* ca l led every 10 ms
**/
void dal i l l_t imingHelper(void *pInstance,uint32_t dal i_t ime_t icker)
{
 da l i l ib_t imingHelper(pInstance, dal i_t ime_t icker);
}

DALI low level driver General 25 von 26

11 General
 The DALI low-level stack is usually supplied with a sample application

to demonstrate the functioning of the processes described here.

DALI low level driver Product support 26 von 26

12 Product support

Manufacturer MBS GmbH

Römerstraße 15

47809 Krefeld

Telephone +49 21 51 72 94-0

Fax +49 21 51 72 94-50

E-Mail support@mbs-solutions.de

Internet www.mbs-solutions.de

 wiki.mbs-software.info

Service times Monday to Friday: 8:30 to 12:00

 13:00 to 17:00

	1 Introduction
	0BTarget group
	2 Safety
	The software present no direct hazards. However, in their function as a gateway between networks in building infrastructures, they are able to seriously disrupt the interaction of network components.

	3 Classification and purpose
	Classification Driver software to enable the communication of microcontrollers with DALI hardware. Hereinafter referred to as the Low Level Driver (LLT).
	Purpose In DALI architecture, the Low Llevel Driver enables DALI-APIs, and therefore DALI-Applications, to communicate with the current hardware and thus the DALI bus.

	4 Structure and features
	General The module is implemented in such a way that no hardware or operating system-related functions are used.
	Such functions are transferred to a module to be created by the user dali_ll_hal.c as callbacks.
	Although the examples given here are programmed for STM32 processors. It should also be possible to implement them on other hardware.
	Communication Communication to and from the driver is also established by means of callbacks, as described in detail in the API documentation.
	All messages to and from the driver are processed via queues to stop interrupt actions lasting too long. The processing of queues is initiated in the main program or in a DALI thread in multi-tasking environments.
	As the driver is able to support several instances of DALI-API on one hardware, several DALI devices (e.g. one LED and one application controller) can exist on a single hardware. These communicate with one another via the driver and with external dev...

	5 Hardware requirements
	6 Signalling
	In multi-tasking environments such as RTOS, signalling callback is provided, by means of which the Low Level Driver can notify the application where data is queued for processing.
	The signaling does not have to contain a queue, just signal that something is to be done. When a message is received, all DaliQueues are processed in full.

	7 DALI Low Level Driver - Main program
	Example
	Explanation The dalill_inithardware() function contains everything needed to initialize the target hardware. It may be necessary to access an automatically generated code.
	Here the PCIOs and the timer are initialized. The timer is not yet started!
	In this function, the two interrupt routines of the Low Level Driver are also set on the corresponding vectors.
	In the case of the LLT, this means the functions dalill_interruptExt for the DALI read pin and dalill_timerinterrupt2 for the timer. Both functions require a parameter of the type dalill_bus_t*. As outlined above, this is envisaged for the future mul...

	PCIO-Interrupt (STM32xx), example
	For the TimerInterrupt in this example, a preliminary routine was used which then supplied the parameter to the real interrupt routine:
	Followed by:
	Initialization Then dalill_createBusLine is called. As a parameter, this has three callback functions that must be defined in dali_ll_hal.c. The callbacks are used to test, set and reset the DALI bus lines.
	The level HIGH or LOW relates to the DALI bus and not the value of the PCIO. When the PCIO drives the DALI bus in an inverted way, therefore, the PCIO is set to LOW and the bus level is set to HIGH through dalill_setBusStateHigh.
	The callbacks are set so that the bus can be set to IDLE as soon as the hardware is activated; this prevents interruptions to the bus.
	If dalill_createBusLine returns a value != NULL, pDalill_bus_0 is a pointer to this instance of the hardware driver.
	This parameter is now used to call the function dali_init() in the application module.
	Dali_init is also described in the DALI-API documentation.
	Main loop Once initializations have been successfully executed, the main loop can be performed.
	dalill_isbusy can be used to test whether data requiring processing is present in the read and/or write queue.
	Calling dalill_processQueues then prompts all data present in both queues to be processed. This means the data is both passed on to the DALI-API and sent via the bus. The data is also transferred to any other instances of DALI-API via the loop interf...
	If nothing else needs to be done in the main loop (apart from operating the DALI stack), only the dalill_processQueues function needs to be permanently called.
	In multi-tasking environments such as RTOS, signalling can be used as outlined above.

	8 Modul dali_ll_hal.c
	This module contains all necessary hardware-related functions. The example code is intended for an STM32 processor and the signalling function is realized using the RTOS-APIs.
	The initializations and work routines for the timer are in the upper part.
	Target hardware If there is no direct possibility for the target hardware to read and/or change the current timer value or set the timer trigger value, the functions dalill_getCurrentTimerVal, dalill_getTimerPeriod and dalill_setTimerPeriod can implem...
	TimerInterrupt routine For this, the timer interrupt routine must be called at least every 10 µs and, depending on a counter, the timer routine of the Low Level Driver.
	The variables required for this are already defined in the structure dalill_bus_t in dali_ll.h. These are the member variables of type uint32_t, tick_cnt and tim_period.
	GPIO manipulation In this example, the routines for GPIO manipulation are intended for hardware with an inverting bus interface.
	Timer functions The timer functions assume a timer that counts up and whose period can be extended with alill_setTimerPeriod, even while it is already running.
	The function dalill_getCurrentTimerVal assumes, that the timer counter continues to count even if the period is extended. So, no timer interrupt is triggered during the extension.
	"getTimerPeriod" returns the current maximum value of the timer.
	IRQ functions The callbacks "enableIRQ" and "disableIRQ" are used to block and enable the processor interrupts. This is necessary so that the write and read operations to the I/O queues in the interrupt are atomic.
	Because this action is different on each target hardware, it was moved to callbacks.

	9 Function dali_init
	A dali_init function is described here for two instances of the DALI stack.
	The instances of the stack are initially created at the start of dali_init. Further callbacks for the low-level driver are initialized and the timer is then started. The driver is thereby ready to use.
	The variables int16_t dalill_base.rx_high_offset, int16_t dalill_base.rx_low_offset, int16_t dalill_base.tx_high_offset and int16_t dalill_base.tx_low_offset are used, to compensate the switching times of the interface between PCIO and the DALI bus.
	This is necessary to ensure the driver does not interpret its own signals as a collision when sending and thereby block itself.
	The variables rx_high_offset and rx_low_offset are used to control the receiving process.
	tx_high_offset and tx_low_offset are used to control the sending process.
	The unit of this variables is microseconds.
	Procedure for setting
	Sending offsets With tx_high_offset the time can be changed in which the level of a „half-bit“ should remain at LOW. If this time is too short, the parameter must be reduced by the corresponding number of microseconds.
	With tx_low_offset the time can be changed in which the level should remain HIGH. If this time is too short, the parameter must be increased.
	The naming of the parameters refers to the change to the target state HIGH or LOW.
	Examples In the following example, both times are too short:
	After reducing tx_high_offset by 10 microseconds, the following picture is obtained:
	After increasing tx_low_offset by 12 microseconds, the following picture is obtained:
	This way the function is then error-free.
	Read offsets Setting the read offsets is relatively simple.
	First rx_high_offset and rx_low_offset are set to value zero.
	When another device transmits, collisions are most likely reported by the low level driver.
	The offsets are then slowly increased in steps of 10.
	As soon as the collisions stop, this value is to documented. The offsets are then increased further until collisions are reported again.
	The optimal offset is in the middle between the lower and the upper determined value. With this, an error free reception should be possible.
	rx_high_offset and rx_low_offset normally have the same values.

	10 Data exchange – DALI low-level driver (API
	The Low Level Driver sends messages to the API via the dalill_toDaliLib function, as in the following example:
	The API sends data to the Low Level Driver via the dali_send_callback. This is loaded with data via the function dall_ll_SendQueue. To ensure the loop layer functions properly, it is important to ensure the right instance of the APIs is entered in the...
	The last major callback is the timing helper, which makes it possible to check and comply with API times.
	For example:

	11 General
	The DALI low-level stack is usually supplied with a sample application to demonstrate the functioning of the processes described here.

	12 Product support

